Reactions of Low-valent Metal Complexes with Fluorocarbons. Part 31.¹ Bis(n-cyclo-octa-1,5-diene)-platinum and -palladium. with Fluoroolefins

By Michael Green, Antonio Laguna, John L. Spencer, and F. Gordon A. Stone,* Department of Inorganic Chemistry, The University, Bristol BS8 1TS

Reaction of bis(η -cyclo-octa-1,5-diene)platinum with C_2F_4 gives an octafluorodiplatinacyclohexane complex $[Pt_2(\mu-CF_2\cdot CF_2)_2(1,5-C_8H_{12})_2], \text{ which undergoes ligand-displacement reactions to form } [Pt_2(\mu-CF_2\cdot CF_2)_2L_4] \\ [L = PEt_3; L_2 = 1,2-C_8H_4(ASMe_2)_2]. \text{ Tris}(\eta-bicyclo[2.2.1]heptene)platinum reacts with } C_2F_4 \text{ to give the } PEt_3(\mu-CF_2\cdot CF_2)_2L_4]$ mononuclear species $[\dot{Pt}(CF_2, \dot{C}F_2)(C_7H_{10})_2]$, which with $P(OMe)_3$ and with $1.5-C_8H_{12}$ forms, respectively, $[Pt(CF_2 \cdot CF_2){P(OMe)_3}_2]$ and $[Pt_2(\mu - CF_2 \cdot CF_2)_2(1,5 - C_8H_{12})_2]$. In contrast, $[Pd(1,5 - C_8H_{12})_2]$ and C_2F_4 afford the four-ring system $[(1,5-C_8H_{12})Pd(CF_2\cdot CF_2)Pd(1,5-C_8H_{12})]$. Chlorotrifluoroethylene undergoes a vinyl-rearrangement reaction on treatment with $[Pt(1,5-C_8H_{12})_2]$ yielding $[PtCl(CF:CF_2)(1,5-C_8H_{12})]$. Hexafluoropropene rearranges on treatment with $[M(1.5-C_8H_{12})_2]$ (M = Pt or Pd) to form $[(1.5-C_8H_{12})M{C(CF_3)_2}M(1.5-C_8H_{12})_2]$ C_8H_{12}]. In the case of the palladium system, the complex [$Pd\{CF_2:CF(CF_3)\}(1,5-C_8H_{12})$] has also been isolated, and shown to be the precursor of the binuclear complex. Octafluorobut-2-ene, hexafluoroacetone, and 1,1-dicyano-2,2-bis(trifluoromethyl)ethylene react with [$Pd(1,5-C_8H_{12})_2$] to give the conventional products $[Pd{CF(CF_3) \cdot CF(CF_3)}(1,5-C_8H_{12})], [Pd{C(CF_3)_2 \cdot O}(1,5-C_8H_{12})], and [Pd{C(CN)_2 \cdot C(CF_3)_2}(1,5-C_8H_{12})].$

WE have previously shown that both $bis(\eta$ -cyclo-octa-1,5-diene)-palladium and -platinum readily react with ethylenewith displacement of cyclo-octa-1,5-diene to form respectively tris(n-ethylene)-palladium and -platinum.² It was thought worthwhile to carry out comparative studies with fluoro-olefins. Some aspects of this investigation have been mentioned in a preliminary communication.³ In this paper we describe a detailed study of such reactions.

RESULTS AND DISCUSSION

Bis(n-cyclo-octa-1,5-diene)platinum,² suspended in diethyl ether, reacted at room temperature with an

excess of tetrafluoroethylene to afford in high yield a white crystalline complex (1), which on the basis of elemental analysis and mass spectroscopy is formulated as a binuclear species with the illustrated structure. The i.r. and n.m.r. spectra are in agreement with such a formulation, and in particular the temperature dependence of the ¹⁹F n.m.r. spectrum can be interpreted in terms of a chair structure with axial (F_a) and equatorial (F_e) fluorine environments. At 90 °C the ¹⁹F spectrum showed a single line ca. 30-Hz broad with two pairs of ¹⁹⁵Pt satellites. On cooling to -60 °C the spectrum collapsed to an approximate AB system, which on analysis afforded coupling constants in agreement with the formulation of the complex as an octafluoro-1,4diplatinacyclohexane. The dynamic behaviour can be explained in terms of a degenerate ring-inversion process of the type well known with cyclohexanes and heterocyclic six-membered ring systems. Additional support for these ideas derives from the reaction of (1) with 1,2bis(dimethylarsino)benzene or triethylphosphine, which leads to displacement of both cyclo-octa-1,5-diene ligands, and the formation of complexes (2) and (3), respectively. The ¹⁹F n.m.r. spectrum of (3) showed a similar temperature dependence to (1) and at -80 °C collapsed to an AB system.

Some insight into the reaction which affords (1) was obtained from a study of the reaction of tetrafluoroethylene with tris(bicyclo[2.2.1]heptene)platinum.² The crystalline product (4) of this reaction was characterised by elemental analysis and n.m.r. spectroscopy as bis- $(\eta$ -bicyclo[2.2.1]heptene)(tetrafluoroethylene)platinum, and, in agreement, treatment of (4) with trimethyl phosphite led to the displacement of both bicyclo[2.2.1]heptene ligands and the formation of (tetrafluoroethylene)bis(trimethyl phosphite)platinum (5). In contrast, cyclo-octa-1,5-diene reacted (room temperature) with the mononuclear complex (4) to give (70%) the previously obtained binuclear species (1).

Before discussing the implications of these observations it is necessary to consider the related reaction of

¹ Part 30, M. Green, J. A. K. Howard, A. C. Laguna, L. E. Smart, J. L. Spencer, and F. G. A. Stone, *J.C.S. Dalton*, 1977, 278.

² M. Green, J. A. K. Howard, J. L. Spencer, and F. G. A. Stone, J.C.S. Dalton, 1977, 271.
³ M. Green, J. A. K. Howard, A. Laguna, M. Murray, J. L. Spencer, and F. G. A. Stone, J.C.S. Chem. Comm., 1975, 451.

1977

tetrafluoroethylene with $bis(\eta$ -cyclo-octa-1,5-diene)palladium.² Treatment at low temperature of [Pd(1,5- C_8H_{12} with an excess of tetrafluoroethylene afforded the

yellow crystalline complex (6), which analysed for $[Pd_2(C_2F_4)(1,5-C_8H_{12})_2]$. Since we had previously ¹ established by a single-crystal X-ray diffraction study that the product of the reaction of hexafluoroacetone with

 $L - L = 1,5 - C_8 H_{12}$

 $[Pt(1,5-C_8H_{12})_2]$ contained the four-membered ring structure [$\dot{P}t\cdot Pt\cdot C(CF_3)_2\cdot \dot{O}(1,5-C_8H_{12})_2$], it was considered illustrated. In agreement, the ¹H n.m.r. spectrum showed the expected resonances due to co-ordinated cyclo-octa-1,5-diene, and the ¹⁹F n.m.r. spectrum showed a single sharp resonance at low field (76.2 p.p.m.,

relative to CCl₃F) consistent with the presence of a

Pd·CF₂·CF₂·Pd system.

We have discussed the possibility that in the reaction of d^8 or d^{10} metal complexes with fluoro-olefins the metal species functions as a nucleophile, and reacts with the fluoro-olefin via a two-electron-transfer step to afford a 1,3-dipolar species.^{4,5,*} The reversibility of this process is indicated by a recent study ⁶ of the pyrolysis of stereochemically pure [Fe(trans-CF₃CH:CHCF₃)(CO)₄] and $[Fe(cis-CHF:CFCF_3)(CO)_4]$. In the pyrolysis, small amounts of geometric isomers of the olefins were obtained, suggesting⁶ the involvement of an intermediate 1,3dipolar species with single-bond character, in which rotation about the formal carbon-carbon double bond may occur. Thus the reaction of $[Pt(1,5-C_8H_{12})_2]$ with tetrafluoroethylene may be pictured as involving the formation of a 1,3-dipolar species (Scheme 1), which via a dimerisation process affords directly the binuclear sixmembered ring complex (1). The results with the bicyclo[2.2.1] heptene complex (4) suggest that treatment with cyclo-octa-1,5-diene leads to reversal of threemembered-ring formation and generation of the same 1,3-dipolar intermediate, which then dimerises. A

that the palladium complex (6) also had the same structural feature, and that a tetrafluoroethylene molecule and two palladium atoms are combined together as

* The reactions reported in this paper can, in principle, also be explained in terms of a diradical (singlet on triplet) species, e.g. \dot{M} -CF₂- \dot{C} F₂, which would be accessible either directly from the fluoro-olefin and the metal(0) species via a one-electron-transfer process, or by electron transfer within a 1,3 dipolar intermediate. However, the absence of products arising from hydrogen-abstraction reactions, which might be expected to occur, lead us to tentatively favour the involvement of dipolar intermediates.

difficulty with this suggestion is that there is no obvious rationale as to why replacement of two bicyclo[2.2.1]heptene ligands by cyclo-octa-1,5-diene leads to formation of a 1,3-dipole. In the reaction of tetrafluoroethylene with $[Pd(1,5-C_8H_{12})_2]$ it is suggested that a

⁴ J. Ashley-Smith, M. Green, and D. C. Wood, J. Chem. Soc. (A), 1970, 1847.
F. G. A. Stone, Pure Appl. Chem., 1972, 30, 551.
R. Fields, G. L. Godwin, and R. N. Haszeldine, J.C.S.

Dalton, 1975, 1867.

competitive process intervenes, in which the initially formed 1,3-dipolar species is captured by a further molecule of the nucleophilic reagent $[Pd(1,5-C_8H_{12})_2]$. A similar mechanism has been suggested 1 to explain the formation of $[Pt_2{(CF_3)_2CO}(1,5-C_8H_{12})_2]$.

Chlorotrifluoroethylene reacts with $[Pt(1,5-C_8H_{12})_2]$ to give white crystals of the trifluorovinyl complex (7). The presence of the arrangement Pt·CF:CF₂ was suggested by the appearance of a strong band in the i.r. spectrum at 1 728 cm⁻¹, and this structural feature was confirmed by the ¹⁹F n.m.r. spectrum which exhibited characteristic 7 chemical shifts and coupling constants. Previous studies 8-10 on the reaction of chlorotrifluoroethylene with (tertiary phosphine)platinum(0) complexes have demonstrated that the vinyl complexes are formed from fluoro-olefin π complexes (metallacyclopropanes), the vinyl rearrangement being assisted by polar solvents. However, in the formation of (7) in diethyl ether as solvent there was no evidence for the intermediacy of

 $[Pt(CF_2 \cdot CFCl)(1,5-C_8H_{12})]$. Although a reaction occurred between $[Pd(1,5-C_8H_{12})_2]$ and chlorotrifluoroethylene, the only product isolated was [PdCl₂(1,5-C₈H₁₂)]. However, η^2 -fluoro-olefin complexes can be formed and this was demonstrated by the observation that reaction

of a 3:1 mixture of trans- and cis-octafluorobut-2-ene with $[Pt(1,5-C_8H_{12})_2]$ or $[Pd(1,5-C_8H_{12})_2]$ in diethyl ether gave high yields of the crystalline complexes (8) and (9), respectively, characterised by elemental analysis, mass spectroscopy, and by ¹H and ¹⁹F n.m.r. spectroscopy. It is interesting that in both cases, as deduced from the relative simplicity of the ¹⁹F spectra, only one isomer is formed, presumably 9 the trans isomer.

The products of the reactions of hexafluoropropene with bis(n-cyclo-octa-1,5-diene)-platinum or -palladium

⁷ A. J. Rest, D. T. Rosevear, and F. G. A. Stone, *J. Chem. Soc.* (A), 1967, 66.
 ⁸ M. Green, A. J. Rest, R. B. L. Osborn, and F. G. A. Stone,

J. Chem. Soc. (A), 1968, 2525.

provide an interesting contrast with those obtained from tetrafluoroethylene. Crystalline diplatinum and dipalladium complexes (10) and (11) were obtained. The

¹⁹F n.m.r. spectrum of the species (10) is fully consistent with the illustrated structure, suggested by elemental analysis and mass and i.r. spectroscopy, showing a single resonance at 47.6 p.p.m. which appeared as a 1:8:18:8:1 multiplet. The splitting arises from

SCHEME 2 C₈H₁₂ ligands are omitted

¹⁹⁵Pt⁻¹⁹F coupling [J(PtF) 153 Hz], this being confirmed by the observation that irradiation at 21.405 3 MHz (¹⁹⁵Pt) collapsed the multiplet to a singlet. Thus in the formation of (10) and (11) from hexafluoropropene a fluorine-migration reaction occurs to give a bridged bis(trifluoromethyl)methylene system.

⁹ M. Green, P. K. Maples, and F. G. A. Stone, J.C.S. Dalton, 1973, 2069 and refs. therein.

¹⁰ M. Green and G. J. Parker, J.C.S. Dalton, 1973, 2099.

When the reaction of $[Pd(1,5-C_8H_{12})_2]$ with $CF_3CF:CF_2$ was carried out for less time (1.5 h, 0 °C) a crystalline

complex $[\dot{P}d{CF_2 \cdot \dot{C}F(CF_3)}(1,5-C_8H_{12})]$ (12) was obtained. The ¹⁹F n.m.r. spectrum confirmed this formulation combination with F^- could give an ylide (Scheme 2) which could serve as the precursor to (10) or (11) by reaction with a further molecule of bis(n-cyclo-octa-1,5diene)-platinum or -palladium. Fluoride-migration reactions are well established in reactions of nucleophilic

showing typical^{8,11} chemical shifts and coupling constants for an η^2 -bonded hexafluoropropene system. Of considerable interest was the observation that a solution of (12) in diethyl ether at room temperature afforded the binuclear complex (11).

carbonylmetal anions with perfluoroallyl chloride, 12, 13 and in reactions of pentacarbonylhydridomanganese with hexafluorobuta-1,3-diene¹⁴ and perfluorocyclopentadiene.15

Trifluoroethylene reacted at room temperature with

SCHEME 3 C₈H₁₂ ligands are omitted

It is assumed that the first step in the formation of (10)and (11) involves nucleophilic attack by Pt⁰ or Pd⁰ on hexafluoropropene to give via dipolar intermediates an η^2 complex (a metallacyclopropane in valence-bond terms). Fluoride-anion elimination, followed by re-

¹¹ C. S. Cundy, M. Green, and F. G. A. Stone, J. Chem. Soc. (A), 1970, 1647. ¹² W. R. McClellan, J. Amer. Chem. Soc., 1961, 83, 1598. ¹³ W. R. McClellan, J. Amer. Chem. Soc., 1961, 83, 1598.

¹⁸ H. D. Kaesz, R. B. King, and F. G. A. Stone, Z. Naturforsch., 1960, B15, 763.

 $[Pt(1,5-C_8H_{12})_2]$ in toluene or diethyl ether to give a mixture of products which we were unable to separate. However, ¹⁹F n.m.r. studies on mixtures provide strong evidence for the presence of binuclear platinum complexes with bridging $C(CF_3)H$ groups. Thus one product showed a resonance at 45.9 p.p.m. with J(PtF) 150 Hz,

¹⁴ B. W. Tattershall, A. J. Rest, M. Green, and F. G. A. Stone, J. Chem. Soc. (A), 1968, 899.
 ¹⁵ R. Fields, M. Green, T. Harrison, R. N. Haszeldine, A. Jones, and A. B. P. Lever, J. Chem. Soc. (A), 1970, 49.

and is assigned structure (13) on the basis of the close similarity of this data with that of (10) (see above), and a characteristic ¹⁶ coupling I(HF) 17 Hz for a C(CF₂)H group. Two other fluorine-containing platinum complexes were present in the mixture, the spectrum of each species showing one multiplet, viz. 40.2 [J(PtF) 210 and J(HF) 13.5] and 40.4 p.p.m. [J(PtF) 204 and J(HF)13.5 Hz]. It is suggested that these two complexes are the two possible isomers (14a) and (14b) in which the trifluoromethyl groups have a relative trans or cis configuration. It is proposed that (13) and (14) might form according to the processes indicated in Scheme 3. However, a difficulty arises. Namely, the normal direction of addition of a nucleophilic reagent to trifluoroethylene would preferentially give the 1,3-dipolar species (A). In order to explain the formation of the complexes it is necessary to assume that the 1,3-dipolar (B) is also formed, possibly in a subsequent thermodynamically controlled step, which then undergoes a fluoride-anion-elimination reaction as discussed above for the corresponding reaction with hexafluoropropene.

We have previously described reactions of $[Pt(1,5-C_8H_{12})_2]$ with $(CF_3)_2CO$ and $(CF_3)_2C:C(CN)_2$.¹ In order to make a comparison, reactions of $[Pd(1,5-C_8H_{12})_2]$ with these dipolar reagents were studied, and in this manner the mononuclear complexes (15) and (16) were

isolated. In neither reaction was there evidence for either the formation of binuclear metal species or products arising from linking of the reactant with cyclo-octa-1,5-diene.

EXPERIMENTAL

Hydrogen-1 and ¹⁹F n.m.r. spectra were recorded on a Varian Associates HA100 spectrometer at 100 and 94.1 MHz, respectively. Fluorine-19 shifts are relative to CCl_3F (0.0 p.p.m.), positive values indicating a shift to high field. Infrared spectra were obtained with a Perkin-Elmer 457 instrument using Nujol mulls. Mass spectra for molecular-weight determinations were recorded on an MS 902 spectrometer operating at 70 eV.* Solvents were dried and distilled under nitrogen, and all the operations were conducted in an atmosphere of dry oxygen-free nitrogen.

Reactions of Bis $(\eta$ -cyclo-octa-1,5-diene)platinum.²—(a) With tetrafluoroethylene. A suspension of $[Pt(1,5-C_8H_{12})_2]$ (0.4 g, 1.0 mmol) in diethyl ether (30 cm³) was introduced into a Carius tube (100 cm³) and C_2F_4 (0.17 g, 1.7 mmol) was condensed (-196 °C) into the vessel. After 4 h at room temperature, white crystals were deposited. A further crop was obtained on reduction of the volume (10 cm³) of the solvent *in vacuo* to give white crystals of $[Pt_2(\mu$ -CF₂·CF₂)₂-(1,5-C₈H₁₂)₂] (1) (0.39 g, 96%), m.p. 140 °C [Found: C, 29.4; H, 3.0%; *M* 806 (mass spectrum), 826 (CHCl₃ solution). $C_{20}H_{24}F_8Pt_2$ requires C, 29.8; H, 3.0%; *M* 806], $v_{max.}$ at 1 435s, 1 340m, 1 318w, 1 260w, 1 255w, 1 235w, 1 205w, 1 192w, 1 128s, 1 098w, 1 052s, 1 022s, 1 002s, 948s, 940s, 895w, 872m, 832s, 785m, 745w, 732w, 700w, 678m, 458w, and 398w cm⁻¹. The ¹H n.m.r. spectrum in CDCl₃ showed resonances at $\tau 4.25$ (m, 4 H, CH:CH) and 7.53 (m, 8 H, CH₂). The ¹⁹F n.m.r. spectrum is temperature dependent. At 90 °C (C_6D_6 —CH₃ C_6H_5) the spectrum showed a single line (δ 86.2 p.p.m.) *ca.* 30-Hz broad with two pairs of satellite peaks [*J*(PtF) 388 and 98 Hz]. At -60 °C (CDCl₃) the spectrum collapsed into an approximate AB system where δ_A 81.6 and δ_B 93.3 p.p.m. [*J*(AB) 230, *J*(APt) 398, *J*(APt') 80, *J*(BPt) 356, and *J*(BPt') 140 Hz].

(b) With chlorotrifluoroethylene. An excess of chlorotrifluoroethylene (1.9 g, 17 mmol) was condensed into a Carius tube containing $[Pt(1,5-C_8H_{12})_2]$ (0.4 g, 1.0 mmol) in diethyl ether (100 cm³). A dark brown precipitate formed on warming to room temperature. After 10 h the volatile material was removed in vacuo, and the volume of solvent was reduced (10 cm³). Addition of light petroleum (20 cm³), followed by cooling (-40 °C), gave white crystals of $[PtCl(CF:CF_2)(1,5-C_8H_{12})]$ (7) (0.24 g, 57%), m.p. 129 °C (decomp.) (Found: C, 28.3; H, 2.9%; M 419. C₁₀H₁₂- $ClF_{3}Pt$ requires C, 28.6; H, 2.9%; M 419), v_{max} at 1 728s, 1 550w, 1 545w, 1 435s, 1 348m, 1 318m, 1 312m, 1 305w, 1 292w, 1 255s, 1 235m, 1 220w, 1 202w, 1 188w, 1 158w, 1 102s, 1 092s, 1 080s, 1 032m, 1 012m, 998s, 985s, 918w, 895w, 872m, 860m, 830m, 805m, 778m, 700w, 655w, 585w, 518w, 482m, 445w, 420w, 335s, 318w, and 280w cm⁻¹. The 1H n.m.r. spectrum in $\mathrm{C_6D_6}$ showed resonances at τ 4.56 (s, 2 H, CH=CH), 5.37 (s, 2 H, CH=CH), and 8.42 (m, 8 H, CH₂). The ¹⁹F n.m.r. spectrum in CH₂Cl₂ showed resonances (Pt·CF³:CF¹F² with F² trans to F³) at 96.7 [d of d, 1 F, F¹, J (PtF¹) 72.0], 121.9 [d of d, 1 F, F², J(PtF²) 10.5], and 159.2 p.p.m. [d of d, 1 F, F³, J(PtF³) 429 Hz], where $J(F^{1}F^{2})$ 90, $J(F^{2}F^{3})$ 107, and $J(F^{1}F^{3})$ 40 Hz.

(c) With Hexafluoropropene. An excess of hexafluoropropene (0.52 g, 3.5 mmol) was condensed into a tube containing $[Pt(1,5-C_8H_{12})_2]$ (0.50 g, 1.25 mmol) suspended in light petroleum (40 cm³). The tube and contents were allowed to warm to room temperature with shaking. After 12 h the reaction mixture was filtered, the solid residue being washed (4 \times 20 cm³) with diethyl ether. The filtrate and combined washings were filtered through a column (2 cm) of alumina, and the volume of the solvent was reduced (10 cm³) in vacuo. The solution was cooled (-40 °C) giving yellow crystals of $[Pt_2\{\mu-C(CF_3)_2\}(1,5-C_8H_{12})_2]$ (10) (0.12 g, 21%), m.p. 170 °C (decomp.) (Found: C, 30.5; H, 3.5%; M 756. C₁₉H₂₄F₆Pt₂ requires C, 30.2; H, 3.2%; M 756), at 1 520w, 1 435m, 1 340w, 1 315w, 1 272s, 1 250m, 1230m, 1208vs, 1175s, 1080vs, 1070s, 1050m, 998w, 972m, 945s, 912s, 865w, 828w, 790ms, 780m, 772m, 762w, 752w, 745w, 688m, 530w, and 460w cm⁻¹. The ¹H n.m.r. spectrum in CDCl₃ showed resonances at τ 4.42 [m, 4 H, CH=CH, J(PtH) 60 Hz] and 7.84 (m, 8 H, CH₂). The ¹⁹F n.m.r. spectrum in CDCl₃ showed a single resonance at 47.6 p.p.m. [five peak multiplet 1:8:18:8:1, J(PtF)153 Hz]; irradiation at 21.405 3 MHz reduced the multiplet to a singlet.

(d) With octafluorobut-2-ene. A similar reaction (10 h,

* 1 eV \approx 1.60 \times 10⁻¹⁹ J.

¹⁶ J. Cooke, W. R. Cullen, M. Green, and F. G. A. Stone, *J. Chem. Soc.* (A), 1969, 1872.

room temperature) of a *cis-trans* (1:3) mixture of octafluorobut-2-enes (1 g, 5 mmol) with $[Pt(1,5-C_8H_{12})_2]$ (0.40 g, 1.0 mmol) in diethyl ether (60 cm³) gave a colourless reaction mixture. Reduction of the volume (5 cm³) of the solvent followed by the addition of light petroleum and

cooling $(-40 \, ^{\circ}\text{C})$ gave white crystals of $[^{\text{Pt}}\{\text{CF}(\text{CF}_3), ^{\circ}\text{CF}(\text{CF}_3)\}(1,5-\text{C}_8\text{H}_{12})]$ (8) (0.40 g, 80%), m.p. 89 $^{\circ}\text{C}$ (Found: C, 28.3; H, 2.6%; M 503. $\text{C}_{12}\text{H}_{12}\text{F}_8\text{Pt}$ requires C, 28.6; H, 2.4%; M 503). The ¹H n.m.r. spectrum in CDCl₃ showed resonances at τ 4.04 [m, 4 H, CH=CH, J(PtH) 56] and 7.61 [m, 8 H, CH₂, J(PtH) 28 Hz]. The ¹⁹F n.m.r. spectrum in CDCl₃ showed resonances at 68.5 [s with ¹⁹⁵Pt satellites, 6 F, CF₃, J(PtF) 106] and 194.3 p.p.m. [s with ¹⁹⁵Pt satellites, 2 F, CF:CF, J(PtF) 114 Hz].

Displacements of Cyclo-octa-1,5-diene from (1).—(a) With 1,2-bis(dimethylarsino)benzene. The arsine $1,2-C_6H_4$ -(AsMe₂)₂ (0.15 cm³, 0.78 mmol) was added dropwise with stirring to a solution of (1) (0.30 g, 0.37 mmol) in methylene chloride (20 cm³). After 1.5 h the volume of the solvent was reduced (5 cm³) in vacuo, light petroleum (20 cm³) was added, and the solution was cooled (-40 °C) to give yellow crystals of [Pt₂(μ -CF₂·CF₂)₂(1,2-C₆H₄(AsMe₂)₂)₂] (2) (0.41 g, 95%) (Found: C, 24.6; H, 3.0. C₂₄H₃₂As₄F₈Pt₂ requires C, 24.8; H, 2.8%).

(b) With triethylphosphine. A solution of PEt₃ (0.23 g, 2 mmol) in diethyl ether (5 cm³) was added to a suspension of (1) (0.30 g, 0.37 mmol) in diethyl ether (50 cm³). After 10 h at room temperature the volume of the solvent was reduced (5 cm³), and the solution was cooled (-30 °C) to give white crystals of $[Pt_2(\mu-CF_2\cdot CF_2)_2(PEt_3)_4]$ (3) (0.39 g, 94%), isolated with 0.5 mol of diethyl ether, m.p. 108 °C (Found: C, 32.9; H, 6.0. C₂₈H₆₀F₈P₄Pt₂·0.5Et₂O requires C, 32.8; H, 6.0%). The ¹H n.m.r. spectrum in C₆D₆ showed resonances at τ 6.73 [q, 2 H, CH₃CH₂O, J(HH) 8.0], 8.30 (m, 24 H, CH₃CH₂P), 8.88 [t, 3 H, CH₃CH₂O, J(HH) 8.0] and 9.02 (m, 36 H, CH₃CH₂P). The ¹⁹F n.m.r. spectrum (CH₃C₆H₅-C₆D₆, -80 °C) showed an AB pattern with the parameters δ_A 71.1 and δ_B 82.5 p.p.m. [J(AB) 245, J(APt) 402, J(BPt) 299, and J(BP) + J'(BP) 41 Hz]. At room temperature broadening occurred. The ³¹P n.m.r. spectrum in C_6D_6 showed a resonance at -5.6 p.p.m. [m, J(PtP) 1 990, J(PF) 41.0 Hz], relative to external H₃PO₄.

Reactions of $Bis(\eta$ -cyclo-octa-1,5-diene)palladium.²---(a) With tetrafluoroethylene. An excess of tetrafluoroethylene (8.0 mmol) was condensed (-196 °C) into a Carius tube containing a suspension of $[Pd(1,5-C_8H_{12})_2]$ (0.8 g, 2.5 mmol) in diethyl ether (30 cm³). The tube and contents were agitated at -30 °C for 1 h. The resulting yellow solid was collected and recrystallised from diethyl ether-light petroleum to give yellow crystals of $[Pd_2(\mu-CF_2\cdot CF_2)(1,5-C_8H_{12})_2]$ (6) (0.6 g, 90%) (Found: C, 40.8; H, 4.6. $C_{18}H_{24}F_4Pd_2$ requires C, 40.9; H, 4.6%), v_{max} at 3 010w, 1 570w, 1 430m, 1 345w, 1 322w, 1 282s, 1 268w, 1 240w, 1 202w, 1 192w, 1 160w, 1 145w, 1 122w, 1 090w, 1 060w, 1 025s, 1 002m, 995w, 975w, 968w, 948m, 898vs, 860s, 828m, 755m, 735m, 728m, 662w, 552w, 545w, and 535w cm⁻¹. The ¹H n.m.r. spectrum (CDCl₃, -30 °C) showed resonances at τ 3.84 (m, 4 H, CH=CH), 4.05 (m, 4 H, CH=CH), and 7.58 (m, 16 H, CH₂). The ¹⁹F n.m.r. spectrum (CDCl₃, -30 °C) showed a resonance at 76.2(s) p.p.m.

(b) With hexafluoropropene. An excess of hexafluoropropene (1.2 g, 8 mmol) was condensed into a tube containing a suspension of $[Pd(1,5-C_8H_{12})_2]$ (0.8 g, 2.5 mmol) in diethyl ether (30 cm³). The tube and contents were allowed to

warm slowly (12 h) to room temperature and filtered. The red solution was filtered through a short (2 cm) column of alumina, and the volume of the solvent was reduced (8 cm³) *in vacuo*. The solution was cooled $(-40 \ ^{\circ}C)$ to give brownred *crystals* of $[Pd_2\{\mu-C(CF_3)_2\}(1,5-C_8H_{12})_2]$ (11) (0.5 g, 69%), m.p. 160 $^{\circ}C$ (decomp.) (Found: C, 39.3; H, 4.4. $C_{19}H_{24}$ - F_6Pd_2 requires C, 39.4; H, 4.2%), v_{max} at 1 550w, 1 475m, 1 430s, 1 340w, 1 318w, 1 262s, 1 238m, 1 230m, 1 218m, 1 182vs, 1 158s, 1 072s, 1 058s, 1 040s, 992w, 975w, 960m, 912m, 900s, 858m, 822m, 765s, 748s, 730s, 722s, 680m, 630m, 522w, and 435w cm⁻¹. The ¹H n.m.r. spectrum in CDCl₃ showed resonances at τ 4.08 (br m, 8 H, CH=CH) and 7.62 (m, 16 H, CH₂). The ¹⁹F n.m.r. spectrum in CDCl₃ showed a resonance at 46.8(s) p.p.m.

If the reaction was terminated after a shorter reaction time then a different product was obtained. Bis(η -cycloocta-1,5-diene)palladium (0.37 g, 1.15 mmol) was suspended in diethyl ether (15 cm³) contained in a large Schlenk tube (100 cm³), and hexafluoropropene (3.5 mmol) was condensed (-196 °C) into the tube. On warming the mixture slowly from -78 to 0 °C (1.5 h) the grey suspension dissolved to give a yellow solution, which was filtered through Celite and evaporated to dryness. The residue was extracted with light petroleum (b.p. 40—60 °C), and the extract was filtered

and cooled $(-78 \,^{\circ}\text{C})$ giving off-white crystals of $[Pd\{CF_{2}, CF_{(CF_{3})}\}(1,5-C_{9}H_{12})]$ (12) (0.19 g, 45%) (Found: C, 35.7; H, 3.4. $C_{11}H_{12}F_{6}Pd$ requires C, 36.2; H, 3.3%), v_{max} at 1 490m, 1 435m, 1 418m, 1 343w, 1 313s, 1 271w, 1 245w, 1 184vs, 1 139s, 1 110s, 1 079s, 1 007w, 973s, 918w, 906w, 861w, 831m, 770s, 739m, and 681s cm⁻¹. The ¹⁹F n.m.r. spectrum in CDCl₃ showed resonances $[Pd(F^{1}F^{2}C:CF^{3}CF_{3}^{4}), F^{2}$ and F^{3} assumed trans ¹¹] at 66.2 (3 F, CF₃), 100.6 (1 F, F¹), 108.8 (1 F, F²), and 199 p.p.m. (1 F, F³) $[J(F^{1}F^{2})$ 147, $J(F^{2}F^{3})$ 80, $J(F^{2}F^{4})$ 10, and $J(F^{3}F^{4})$ 10 Hz].

(c) With octaffuorobut-2-ene. Similarly, reaction of octafluorobut-2-ene (1.6 g, 8.0 mmol) with $[Pd(1,5-C_8H_{12})_2]$ (0.8 g, 2.5 mmol) in diethyl ether (30 cm³) gave (3 h) a colourless solution. Removal of the solvent *in vacuo* and recrystallisation from diethyl ether-light petroleum afforded

white crystals of $[\dot{Pd}{CF(CF_3)} \cdot \dot{CF}(CF_3) \cdot (1,5-C_8H_{12})]$ (9) (0.9 g, 87%), m.p. 67 °C (decomp.) (Found: C, 35.3; H, 3.0. $C_{12}H_{12}F_8Pd$ requires C, 34.8; H, 2.9%). The ¹H n.m.r. spectrum (CDCl₃, -30 °C) showed resonances at τ 3.90 (m, 8 H, CH=CH) and 7.52 (m, 16 H, CH₂). The ¹⁹F n.m.r. spectrum (CDCl₃, -30 °C) showed resonances at 67.3 (s, 6 F, CF₃) and 190.4 p.p.m. (s, 2 F, CF=CF).

(d) With hexafuoroacetone. Hexafuoroacetone (0.42 g, 2.5 mmol) was condensed into a tube containing a suspension of $[Pd(1,5-C_8H_{12})_2]$ (0.8 g, 2.5 mmol) in diethyl ether (30 cm⁵). The tube and contents were allowed to warm slowly (2 h) to 0 °C. After 1 h at 0 °C the resulting colourless solution was evaporated to dryness and the solid was recrystallised from diethyl ether-light petroleum to give white

crystals of $[Pd\{C(CF_3)_2 \cdot O\}(1,5-C_8H_{12})]$ (15) (0.8 g, 84%), m.p. 110 °C (decomp.) (Found: C, 34.8; H, 3.2. $C_{11}H_{12}$ - F_6OPd requires C, 34.7; H, 3.2%). The ¹H n.m.r. spectrum (CDCl₃, -30 °C) showed resonances at τ 4.03 (br s, 2 H, CH=CH), 4.43 (br s, 2 H, CH=CH), and 7.51 (m, 8 H, CH₂). The ¹⁹F n.m.r. spectrum (CDCl₃, -30 °C) showed a resonance at 67.3(s) p.p.m.

(e) With 1,1-dicyano-2,2-bis(trifluoromethyl)ethylene. A similar reaction $(-40 \,^{\circ}\text{C})$ of $(\text{CF}_3)_2\text{C:C(CN)}_2$ (0.3 g, 1.5 mmol) and $[\text{Pd}(1,5\text{-}C_8\text{H}_{12})_2]$ (0.46 g, 1.5 mmol) in diethyl ether

 (30 cm^3) gave on recrystallisation from diethyl ether-light

petroleum white crystals of $[\dot{P}d\{C(CN)_2, C(CF_3)_2\}(1,5-C_8H_{12})]$ (16) (0.4 g, 63%), m.p. 280 °C (decomp.) (Found: C, 39.1; H, 2.9; N, 6.4. $C_{14}H_{12}F_6N_2Pd$ requires C, 39.2; H, 2.8; N, 6.5%). The ¹H n.m.r. spectrum (CDCl₃, -30 °C) showed resonances at τ 3.89 (br s, 4 H, CH=CH) and 7.38 (m, 8 H, CH₂). The ¹⁹F n.m.r. spectrum (CDCl₃, -30 °C) showed a resonance at 55.1(s) p.p.m.

Reaction of $Tris(\eta$ -bicyclo[2.2.1]heptene)platinum with Tetrafluoroethylene.--An excess of tetrafluoroethylene (4.0 mmol) was condensed into a tube containing $tris(\eta$ -bicyclo-[2.2.1]heptene)platinum (1.5 g, 3.1 mmol) in light petroleum (50 cm³). After 1 h at room temperature, the reaction mixture was filtered and the solvent was removed in vacuo. Recrystallisation of the white solid from light petroleumbicyclo[2.2.1]heptene (5:1) afforded white crystals of $[Pt(CF_2 \cdot CF_2)(C_7H_{10})_2]$ (4) (1.25 g, 83%), m.p. 95–96 °C (Found: C, 39.7; H, 4.3. C₁₆H₂₀F₄Pt requires C, 39.8; H, 4.2%), $\nu_{max.}$ at 2 510w, 2 470w, 1 328m, 1 298w, 1 281m, 1 252w, 1 210w, 1 172w, 1 149s, 1 131s, 1 124s, 1 117m, 1085(sh), 1070s, 1060(sh), 1002w, 970w, 940w, 911w, 889w, 870w, 850w, 798s, and 780s cm⁻¹. The ¹H n.m.r. spectrum in $C_{6}D_{6}$ showed resonances at τ 6.1 [s, with ¹⁹⁵Pt satellites, 4 H, H¹, CH=CH, J(PtH¹) 53 Hz], 7.2 (m, 4 H, H²), 8.8 (m, 8 H, H³ and H^{3'}), and 9.8 (AB multiplet, 4 H, H⁴ and H⁵). The ¹⁹F n.m.r. spectrum in C_6D_6 showed a resonance at 127.6 p.p.m. [s, with ¹⁹⁵Pt satellites, J(PtF) 252 Hz].

Reaction of Cyclo-octa-1,5-diene with (4).—An excess of cyclo-octa-1,5-diene (10 cm^3) was added to a solution of

(4) (1.35 g, 2.8 mmol) in light petroleum (70 cm³). After 10 h at room temperature the resulting white crystals were collected and washed with light petroleum. Elemental analysis and i.r. and n.m.r. spectroscopy showed the material to be complex (1) (0.8 g, 71%).

Reaction of Trimethyl Phosphite with (4).—Trimethyl phosphite (0.7 g, 5.6 mmol) in light petroleum (10 cm³) was added to a solution of (4) (1.35 g, 2.8 mmol) in light petroleum (30 cm³). After 10 h at room temperature the volume of the solvent was reduced *in vacuo*, and the solution was cooled (-30 °C) to give white *crystals* of (tetrafluoroethylene)-bis(trimethyl phosphite)platinum (5) (0.94 g, 62%), m.p. 30—31 °C (Found: C, 18.6; H, 3.6. C₈H₁₈F₄O₆P₂Pt requires C, 17.7; H, 3.3%). The ¹⁹F n.m.r. spectrum in C₆D₆ showed a resonance at 126.7 p.p.m. [where J(PtF) 271 and $J(\text{PtF}_{cis}) + J(\text{PtF}_{trans})$ 112 Hz].

We thank the U.S.A.F. Office of Scientific Research for partial support, and Rosemary Giles for studies on the synthesis of (4) and (5).

[6/2069 Received, 10th November, 1976]